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Abstract. This research investigates a swarm intelligence based multi-
objective optimization algorithm for optimizing the behavior of a group
of Arti�cial Neural Networks (ANNs), where each ANN specializes to
solving a speci�c part of a task, such that the group as a whole achieves
an e�ective solution. Niche Particle Swarm Optimization (NichePSO)
is a speciation technique that has proven e�ective at locating multiple
solutions in complex multivariate tasks. This research evaluates the e�-
cacy of the NichePSO method for training a group of ANNs that form a
neural network ensemble (NNE) for the purpose of solving a set of mul-
tivariate tasks. NichePSO is compared with a gradient descent method
for training a set of individual ANNs to solve di�erent parts of a multi-
variate task, and then combining the outputs of each ANN into a single
solution. To date, there has been little research that has compared the
e�ectiveness of applying NichePSO versus more traditional supervised
learning methods for the training of neural network ensembles.

1 Introduction
In nature, biological systems such as ant and termite colonies optimize solutions
to their tasks via having a set of simple individuals specialize to solving dif-
ferent (and complementary) parts of the problem [2]. A goal of arti�cial life is
to replicate the mechanisms that allow groups of behaviorally simple individ-
uals to cooperate in order to optimize solutions to complex tasks [5]. Particle
Swarm Optimization (PSO) has close ties to arti�cial life models such as that
of Reynolds [13] and Heppner [9], which indicated that emergent group dynam-
ics such as bird �ocking behavior are based on local interactions. These studies
were the foundation for the development of PSO with applications that include
industrial process control [11] and multi-objective function optimization [1].

Most evolutionary and swarm intelligence techniques are designed to converge
on a single solution in a search space, where the quality of the solution depends
on a task dependent �tness function. These techniques implicitly assume that
only a single solution exists in the search space, and therefore that the search
space is univariate. When presented with a multivariate task domain, typical
univariate techniques will either favor a single solution, or fail to converge due to
the confusion introduced by multiple possible solutions [3]. Niching techniques
attempt to overcome the de�ciencies of univariate optimization techniques by
explicitly assuming that multiple solutions exist in a search space.
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This paper evaluates the e�cacy of a PSO based niching method [3] compared
with an established gradient descent method [14] for training Neural Network
Ensembles (NNEs) [8] to solve a set of multivariate classi�cation and regression
tasks. To date, there has been little research that compares the e�ectiveness of
using more traditional supervised learning techniques such as back propagation
to train NNEs with more recent niche based (multi-population) swarm intelli-
gence techniques such as that of Zhang et al. [15] and Brits et al. [3] to train
NNEs. Results elucidate that NichePSO outperforms back propagation as a NNE
training method for a majority of the multivariate classi�cation and regression
tasks. Traditionally, back propagation has been successfully applied as a super-
vised learning approach to train NNEs for solving such tasks [10]. Given this, the
following research goal, hypotheses, and performance measure were formulated.
� Research Goal: To elucidate that the NichePSO algorithm [3] is able to

outperform a back propagation algorithm [14] for training NNEs applied to
solve a given set of multivariate classi�cation and regression tasks.

� Hypothesis 1: For the given task set, back propagation is able to train a
NNE such that the NNE outperforms each of its constituent ANNs.

� Hypothesis 2: For the given task set, NichePSO is able to train a NNE
such that the NNE outperforms each of its constituent ANNs.

� Hypothesis 3: For the given task set, NichePSO is able to train a NNE
such that it outperforms a back propagation trained NNE.

� Performance Measure: The portion of misclassi�ed cases and the mean
squared error, for classi�cation and regression tasks, respectively.

2 Methods for Training Neural Network Ensembles
This section describes comparative methods evaluated for solving a given set of
classi�cation and regression tasks. These methods are: Gradient Descent trained
Ensembles (GDE) and Niche Particle Swarm Optimized Ensembles (NPSOE).
GDE uses back propagation to train a NNE, and NPSOE uses the NichePSO
algorithm to train a NNE in order to solve a given task set. Previous research
has indicated that when a single network is not capable of correctly representing
a given data set, the fusion of a set of networks, each of which is specialized to
a part of the data set, can signi�cantly improve performance [8]. The key idea
behind the performance increase yielded by NNEs, is that each network in the
ensemble specializes to solving a complementary part of the task. Collectively,
these specializations result in a task performance that is superior to that of a
single ANN applied to solve the same task. From a behavioral perspective, an
input layer is processed by all constituent ANNs of a NNE, and a fusing scheme
is then applied in order to combine the outputs of each ANN into one NNE
output layer [8]. This research uses a uniformly weighted output scheme for the
regression tasks, and a majority voting scheme for classi�cation tasks [10].

When training a NNE using GDE or NPSOE (for either a classi�cation or
regression task), the input layer consisted of attributes from training data. This
input layer was split over the constituent ANNs of the NNE. For measuring
the performance of a trained NNE, the validation data was passed as the input



Table 1. GDE and NPSOE method parameter settings.
GDE and NPSOE Method Parameter Settings

Number of hidden nodes (NPSOE / GDE) 8
Input / hidden node transfer function (NPSOE / GDE) linear
Output node transfer function (NPSOE / GDE) sigmoid
Learning rate (GDE) 0.001
Momentum (GDE) 0.01
Iterations (NPSOE / GDE) 50000
Number of particles (NPSOE) 30
Weight range (NPSOE / GDE) [-1.0, +1.0]
Number of networks (NPSOE / GDE) 7
Number sub-swarms (NPSOE) 7
Initial ρ (NPSOE) 0.1
ρ increment value (NPSOE) 15
ρ decrement value (NPSOE) 5

layer to the NNE, and NNE performance compared to NNE performance using
training data. An average task performance was calculated over multiple runs.

Both the GDE and NPSOE methods used a homogeneous ensemble, meaning
each of the constituent ANNs was the same. The number of input neurons used
by each ANN equalled the number of attributes that were being passed as the
input layer for a given classi�cation or regression task. The number of outputs
always equalled one, which was the prediction or classi�cation value. Hence, the
value type of the input and output neurons depended on the value of the at-
tributes being used by a given classi�cation or regression task. For both methods,
prior to training, the weights of each ANN were randomly initialized within the
range [-1.0, 1.0]. Also, for both methods, the fusion of each of the outputs of
each ANN was done according to a majority voting [8] or weighted average [12]
scheme for classi�cation and regression tasks respectively. Table 1 presents the
parameter values used by the GDE and NPSOE methods. These values were de-
rived in a set of exploratory experiments, and minor changes to these parameter
values produced similar results for both GDE and NPSOE applied to all tasks.
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Fig. 1. Architecture of back propagation trained neural network ensemble.
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Fig. 2. Architecture of the NichePSO trained neural network ensemble.

2.1 GDE Method: Back Propagation trained Ensemble
Figure 1 illustrates the architecture of the method for training a NNE with back
propagation. First, the training data is given to the input layer of the NNE. Each
ANN is then trained by a back propagation algorithm [14]. The validation data is
then passed to the NNE input layer, the output is compared with that produced
by the training data, and the weights of the NNE are adapted accordingly.

2.2 NPSOE Method: NichePSO trained ensemble
NichePSO [4] is a niche-based PSO method that dynamically creates sub-swarms
that converge upon multiple newly discovered optima in the search space. The
function of the initial main swarm is thus to continually explore the search space.
Figure 2 illustrates the architecture used for training a NNE with NichePSO
(NPSOE). For the experiments presented in section 3, NPSOE derived one sub-
swarm in order to optimize the weights of each constituent ANN. Each sub-
swarm particle represents the weight vector of a given ANN. Each sub-swarm
uses the GCPSO algorithm [6] as the particle velocity update strategy. GCPSO
was selected since it has been demonstrated to work well with low particle num-
bers, and is more appropriate for exploitation than exploration. In order to train
each ANN the training data is passed to each ANN as the input layer, and the
output is compared to that produced when the validation data is passed. The
error is used as a �tness value by the NichePSO algorithm. The weights of each
ANN were set according to each sub-swarm's best particle. For a complete de-
scription of the NichePSO algorithm refer to Brits et al. [4].

3 Experiments
The performance of the GDE and NPSOE methods were both evaluated on
�ve regression, and �ve classi�cation tasks. The performance of each method
was measured as the number of misclassi�ed cases for classi�cation tasks, and
mean squared error for regression tasks. For the performance evaluation of each



method, the validation set, and not the training set, was used. For each method
applied to each task, 20 simulation runs were executed, and results presented are
averages of these 20 runs. Method parameters for all classi�cation and regression
tasks are as presented in table 1. With the exception of the random pattern
classi�cation task, and the Friedman#1 synthetic data set used for the �rst
regression task, the data sets used for all classi�cation and regression tasks were
taken from the UCI Machine Learning Repository1.

3.1 Classi�cation Tasks
� Classi�cation Task 1: Random pattern classi�cation: The classi�ca-

tion of random patterns task investigated by Hansen and Salamon [8] is used.
There were 1000 training and 400 validation patterns. Each pattern was a
real valued input vector with 20 attributes. Given this training set, the task
was to correctly classify each validation pattern to one of the �ve classes.

� Classi�cation Task 2: Ozone Level Detection: This data set uses 2536
instances. Each instance contains 73 attributes. The task is to correctly clas-
sify an ozone reading given a set of environment related attributes.

� Classi�cation Task 3: Abalone: This data set consists of 4177 data pat-
terns, each with eight real valued attributes. The task is to correctly classify
abalones as belonging to a particular age range, given a set of attributes.

� Classi�cation Task 4: Wine: The wine data set contains 178 types of
wine, each with 13 real valued attributes. The attributes represent physical
characteristics of the wines. All wines belong to one of three classes. The
task is to correctly classify each wine to the correct class.

� Classi�cation task 5: Glass: The glass database consists of 214 patterns
each representing a piece of glass. Each pattern contains ten real valued
attributes. The task is to classify each piece of glass as crime scene processed,
or not, for a given set of attributes.

3.2 Regression Tasks
� Regression Task 1: Friedman #1: The Friedman#1 synthetic data set

[7] corresponds to training vectors with �ve input and one output variable.
The data set was created by randomly generating real valued input vectors
with attributes in the range [0.0, 1.0], and computing a corresponding output
[7]. A set of 1200 patterns was split into a training set baring 1000 instances,
and the remaining 200 patterns were assigned to the validation set.

� Regression Task 2: MPG Auto: This data set consists of 398 instances,
having eight real valued attributes. The task is to determine the fuel con-
sumption of cars with given attributes.

� Regression Task 3: Computer Hardware: This data set contains 209
instances, where each instance has nine integer attributes. The task is to
predict the relationship between hardware and performance given a set of
computer hardware attributes.

1 http://archive.ics.uci.edu/ml/datasets.html.



� Regression Task 4: Servo: The servo data set consists of 167 instances,
where each instance has two continuous and two discrete attributes. The
task is to predict a a servo-mechanism rise time (the time required for the
mechanism to respond to a change in position) given a set of attributes.

� Regression Task 5: Wisconsin breast cancer: The Wisconsin breast
cancer data set comprises 198 instances each with 34 real valued attributes.
The task is to predict cancer (benign or malignant) given a set of attributes.

4 Results and Discussion
Table 2 presents the results of an independent t-test (0.95 con�dence value) ap-
plied in order to test for a statistically signi�cant di�erence between the average
task performance results of GDE and NPOSOE applied to each of the classi�-
cation and regression tasks. That is, the NPSOE method out-performs GDE on
three out of the �ve classi�cation tasks and four out of the �ve regression tasks.

Hypothesis 1: T-tests applied to misclassi�cation and mean square error
results of the NNE and each of the constituent ANNs trained by back propaga-
tion indicates the following signi�cant di�erences. For the classi�cation tasks, it
is only for the random pattern classi�cation task, that back propagation trained
NNEs are able to out-perform each of their constituent ANNs (table 2). For the
regression tasks, the Friedman #1, Wisconsin Breast Cancer, and MPG Auto
trained NNEs out-perform each of their constituent ANNs (table 2).

Hypothesis 2: T-tests applied to misclassi�cation and mean square error
results of the NNE and constituent ANNs trained by NichePSO indicates the
following signi�cant di�erences. For the classi�cation tasks, NichePSO trained
NNEs out-perform their constituent ANNs for the random pattern, abalone, wine,
and Ozone Level Detection tasks (table 2). NichePSO trained NNEs out-perform
each of their constituent ANNs for all regression tasks (table 2).

Hypothesis 3: T-tests applied to misclassi�cation and mean square error
results of the back propagation (GDE method) and the NichePSO (NPSOE
method) trained NNEs indicates the following signi�cant di�erences. For the
classi�cation tasks, NPSOE out-performs GDE for the random pattern, glass
and Ozone Level Detection tasks (table 2). However, for the abalone, and wine
tasks, both methods yield comparable results. NPSOE out-performs GDE for all
of the regression tasks, except the Wisconsin Breast Cancer task. A statistical
comparison of mean squared indicated comparable results for this task (table 2).

These results indicate that NichePSO (hypothesis 2) comparative to back
propagation (hypothesis 1) is an appropriate method for training NNEs. That
is, NichePSO trained NNEs outperform each of the constituent ANNs trained
by NichePSO for 90% of the tasks. Where as, back propagation trained NNEs
outperform each of the constituent ANNs trained by back propagation for only
40% of the tasks. Regarding hypothesis 3, results indicate that the NichePSO
trained NNE (NPSOE), comparative to a back propagation trained NNE (GDE)
is appropriate for solving the given set of multivariate classi�cation and regres-
sion tasks. That is, NPSOE outperforms GDE with a statistically signi�cant



Table 2. Overview of acceptance or rejection of hypotheses for the results of GDE and NPSOE
when applied to each of the classi�cation and regression tasks.

Classi�cation Tasks Hypothesis 1 Hypothesis 2 Hypothesis 3
Accept/Reject Accept/Reject Accept/Reject

Random Pattern Classi�cation Accepted Accepted Accepted
Glass Rejected Rejected Accepted
Abalone Rejected Accepted Rejected
Wine Rejected Accepted Rejected
Ozone Level Detection Rejected Accepted Accepted
Regression Tasks Hypothesis 1 Hypothesis 2 Hypothesis 3

Accept/Reject Accept/Reject Accept/Reject
Friedman #1 Accepted Accepted Accepted
Wisconsin Breast Cancer Accepted Accepted Rejected
MPG Auto Accepted Accepted Accepted
Computer Hardware Rejected Accepted Accepted
Servo Rejected Accepted Accepted

di�erence for 70% of the tasks. Table 3 presents the task performance results for
GDE and NPSOE applied to the classi�cation and regression tasks.

Table 3. Average portion of misclassi�ed cases (classi�cation) and mean squared error (re-
gression), and standard deviation in parentheses for GDE and NPSOE.

Classi�cation Tasks GDE NPSOE
Random Pattern Classi�cation 0.33 (0.022) 0.291 (0.02)
Glass 0.378 (0.157) 0.291 (0.074)
Abalone 0.374 (0.01) 0.432 (0.016)
Wine 0.646 (0.068) 0.652 (0.047)
Ozone Level Detection 0.648 (0.015) 0.567 (0.02)
Regression Tasks GDE NPSOE
Friedman #1 2.169 (0.055) 0.249 (0.128)
Wisconsin Breast Cancer 29.217 (5.644) 51.413 (16.256)
MPG Auto 63.059 (0.018) 41.745 (16.938)
Computer Hardware 60.578 (6.299) 54.625 (6.853)
Servo 1.211 (0.228) 1.019 (0.006)

5 Conclusions
This research was an initial step for establishing NichePSO as being an appro-
priate algorithm for training neural network ensembles to solve complex multi-
variate tasks that require di�erent networks to specialize to solve complementary
parts of the task. This paper presented a set of multivariate classi�cation and
regression tasks. Such tasks have typically been solved via applying gradient de-
scent algorithms to train neural networks or neural network ensembles. Results
indicated that a neural network ensemble trained with NichePSO was able to ex-
ploit the multivariate nature of these tasks, which in turn lead to a signi�cantly
lower classi�cation and prediction error rate compared to the back propagation
trained ensemble. Given that NichePSO trained neural network ensembles have



been successful at solving more the classi�cation and regression tasks presented
in this paper, the approach has potential applications to complex arti�cial life
oriented tasks. For example, automating the design of a group of agent neu-
ral controllers such that the controllers develop specialized and complementary
behaviors and a collective group behavior is produced that solves a given task.
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